무료 형식 유형 계산기가 포함된 CMOS 센서 크기 차트 및 형식 유형 조회 테이블

카메라의 이미지 센서 크기와 픽셀 크기는 이미지 품질에 매우 중요합니다.

Jul 28, 2025
작성:
Max Henkart

디지털 카메라의 센서 포맷 크기와 픽셀 크기는 카메라의 거의 모든 성능 속성에 영향을 미칩니다.

포맷 크기는 저조도 성능, 다이내믹 레인지, 크기, 비용, 전력 소비, 렌즈 요구 사항, 픽셀 수 해상도 등 시스템 제약 조건에 영향을 미치는 핵심 요소입니다. 이러한 요소 각각은 카메라의 형태와 기능을 변경합니다.

이러한 요소가 카메라의 이미지 품질에 미치는 영향에 대한 일반적인 경험 법칙이 있습니다. 절충점은 여러 자유도에 걸쳐 지속적이고 매우 상호 연관되는 경향이 있습니다.

모든 카메라 사용 사례에는 애플리케이션별 요구 사항이 있으므로 CMOS 이미지 센서 선택은 사례별로 이루어져야 합니다. 당사는 업계별 센서 유형 사용법을 분류하기 위해 최선을 다했습니다.

CMOS 센서 포맷

음극선 기반 비디콘 튜브 때문에 혼란스러운 디지털 카메라 센서 포맷 유형

디지털 카메라 센서의 형식 유형은 비전 산업에서 가장 혼란스러운 것 중 하나입니다. 형식 유형은 CCD 또는 CMOS 센서가 출현하기 전에 비디오 카메라 튜브가 구성된 방식의 잔재입니다.

이러한 '비디오 튜브'는 캐소드 튜브의 활성 영역 외부에 불투명한 영역이 있어 빛에 민감한 영역을 줄였습니다. 이는 더 큰 튜브 또는 캐소드를 잡고 있는 역학으로 인해 발생했습니다. 예를 들어:

  • 4:3 종횡비를 가진 1″ 이미지 센서는 가로 12.8mm * 세로 9.6mm * 대각선 16mm입니다.
  • 4:3 종횡비를 가진 1/3″ 이미지 센서는 가로 4.8mm * 세로 3.6mm * 대각선 6mm입니다.

이해가 안 되시죠? 1"는 25.4mm이고 1/3"는 8.5mm입니다! 1/3의 1" 포맷 대각선도 5mm여야 합니다!

1" 포맷 유형을 예로 들어보겠습니다. 음극선관 직경의 일부는 튜브 벽이었고 이미징 목적으로 사용되지 않았습니다. 따라서 면적이 25.4mm에서 16mm로 줄었습니다.

따라서 1" 유형 음극선관에 적합한 렌즈는 전체 25.4mm 튜브 직경까지 확장되는 이미지 서클이 필요하지 않았습니다.

일부 역사적 참고 문헌에 따르면 센서 크기는 3/2 * 포맷 유형을 반올림한 후 반올림한 것으로 나와 있지만, 여전히 많은 불연속성이 존재합니다.

현대의 이미징에서는 원본 비디오 튜브 크기에 해당하는 이미지 센서 대각선 치수가 거의 무한대에 가깝게 존재합니다.

따라서 저희는 이미지 센서 포맷 유형을 보다 정확하게 정의하는 '현대적' 방정식을 도출하기 위해 최선을 다했습니다. 일반적으로 합의된 데이터 포인트인 1" = 16.0mm, 1/2" = 8.0mm, 1/3" = 6.0mm, 1/4" = 4.5mm를 사용하여 적합한 방정식을 도출한 다음 가능한 한 많은 다른 기사를 상호 참조했습니다.

안타깝게도 디지털 이미지 센서 유형에 대한 공식에는 1/2" 이미지 센서와 1/2.3" 이미지 센서 포맷 크기 사이에 불연속성이 있습니다.

디지털 카메라 센서 크기 비교 공식

CMOS 이미지 센서 포맷 유형을 제시할 때 이것이 의미하는 바

이 주관적인 분류는 제조업체가 센서의 형식 유형을 게시할 때 '최상의 판단'을 적용할 수 있음을 의미합니다.

이는 엔지니어가 CS 마운트 렌즈 또는 M12 렌즈와 같은 렌즈를 고려할 때 정확한 출력 픽셀 수와 픽셀 피치(크기)를 사용해야 함을 의미합니다.

시중에 판매되는 대부분의 센서는 아래 형식 유형 크기를 대략적으로 준수하며, 이는 위의 공식에서 계산할 수 있습니다.

디지털 이미지 센서 크기 비교 조회 표 20231106.webp__PID:59350128-6976-42b6-91a0-f26b0b6dc551포맷 형식 조회 테이블 다운로드

모든 센서에서 모든 렌즈의 "35mm 환산" EFL 계산

화각(Field of View)에 대해 논의할 때 "35mm 환산 초점 거리(EFL)"를 사용하는 엔지니어와 취미 애호가 간의 이해를 돕기 위해 간단한 계산기를 만들었습니다.

더욱 향상된 기능과 계산을 원하시면 더욱 고급 화각 계산기를 참조하십시오.

핵심 내용: 렌즈 선택 시 정확한 값을 대체할 수 있는 것은 없습니다.

대부분의 제조업체는 포맷 유형 분류를 일관성 있고 정확하게 처리합니다. 그러나 잘못 분류된 사양 시트가 많이 있습니다.

다시 말씀드리지만, 렌즈를 찾을 때는 항상 정확한 출력 픽셀 수와 픽셀 피치(크기)를 사용하십시오!

사용 중인 센서를 파악했고 35mm 포맷 유형 해당 EFL을 계산하려면 카메라 화각 계산기를 확인하십시오.

Find M12 lenses by browsing below our using our M12 Lens Calculator with FoV Calculations.

왜곡 없는 3.2mm 렌즈
왜곡 없는 3.2mm 렌즈

CIL034-F2.3-M12A660

$39.00
$0.00
세부 정보 보기
왜곡률 최소화 6mm M12 렌즈
왜곡률 최소화 6mm M12 렌즈

CIL059-F1.7-M12B650

$49.00
$0.00
세부 정보 보기
Automotive 6mm M12 Lens
Automotive 6mm M12 Lens

CIL359-F1.6-M12A650

$39.00
$0.00
세부 정보 보기
IR 보정 12mm M12 렌즈
IR 보정 12mm M12 렌즈

CIL122-F2.0-M12A650

$59.00
$0.00
세부 정보 보기
망원 35mm M12 렌즈
망원 35mm M12 렌즈

CIL350-F2.4-M12A650

$59.00
$0.00
세부 정보 보기
망원 50mm M12 렌즈
망원 50mm M12 렌즈

CIL051-F2.8-M12C650

$79.00
$0.00
세부 정보 보기
185°@7.8mm 어안 M12 렌즈
185°@7.8mm 어안 M12 렌즈

CIL227-F2.5-M12B660

$39.00
$0.00
세부 정보 보기
191°@6.4mm Fisheye Lens
191°@6.4mm Fisheye Lens

CIL281-F1.8-M12A650

$70.00
$0.00
세부 정보 보기

자주 묻는 질문

How do I properly focus my M12 lens?

Blurry images are typically caused by incorrect focus distance or improper installation. First, thread your M12 lens into the holder until you go past focus. Then, while viewing a live image, slowly rotate the lens counterclockwise (loosening) in small increments (1/8 turns) until your subject comes into sharp focus. The 0.5mm thread pitch means each full rotation moves the lens 0.5mm, so small adjustments make a big difference.

Quick troubleshooting: If you can't achieve focus, check that: (1) your subject is beyond the minimum object distance (typically 20cm for wide angle lenses) and (2) the lens holder height matches your sensor's requirements. Once focused, apply thread locker or use a lock nut to prevent the lens from rotating during use.

For a complete focusing procedure with test patterns and tips, see our step-by-step camera focusing guide.

Can I use M12 lenses on my C-mount camera with an adapter?

While M12-to-C-mount adapters exist, there is a possibility these won't work due to mechanical back focal length (MBFL) incompatibilities. The critical issue: C-mount cameras have filters built in with holder mechanics that prevent the lens from moving close enough to the sensor: the M12 lens usually can only get as close as 4-5mm away from the sensor. If your M12 lens has an MBFL less than ~4mm (common for wide-angle lenses), it physically cannot get close enough to the sensor to achieve focus - the image will be permanently blurry regardless of lens adjustment.

How to check compatibility: Look up your M12 lens's MBFL in its datasheet - this is the distance from the lens mounting surface to the sensor when focused at infinity. If the MBFL is less than 4mm, the lens won't work with most C-mount cameras, even with adapters. Additionally, many C-mount cameras have protruding IR cut filter holders or protective windows that increase the minimum distance to 6-8mm, making even more M12 lenses incompatible.

Working alternatives: (1) Choose M12 lenses specifically designed with long MBFL (>8mm) for C-mount adaptation - usually telephoto focal lengths. (2) Use a C-mount camera with a recessed sensor design or removable filter holder. (3) Machine a custom adapter that allows the M12 holder to sit inside the C-mount thread. (4) Select proper C-mount lenses instead - they're designed for this mount and will perform better. Remember that even if you achieve focus, the C-mount camera's larger sensor may exceed the M12 lens's image circle, causing severe vignetting.

How do I calculate what field of view my lens will give me?

Your actual field of view depends on both your lens focal length and sensor size. As a quick reference: with a 1/2.8" sensor (6.2mm diagonal), a 2.8mm lens gives ~90° horizontal FoV, a 3.6mm gives ~70°, a 6mm gives ~45°, and a 12mm gives ~23°. Larger sensors capture more of the image circle, resulting in wider fields of view with the same lens.

Important for wide angle lenses: Be aware that lens distortion affects your usable field of view. Standard wide angle lenses often have 5-15% barrel distortion, which curves straight lines but fits more content in the frame. Our low-distortion lenses (<1% distortion) maintain geometric accuracy but may have a slightly narrower field of view. Choose low-distortion for measurement/inspection applications, and standard distortion for general surveillance where maximum coverage matters more than geometric precision.

Use our Field of View Calculator to get exact angles for your specific lens/sensor combination - just input your focal length and sensor dimensions.

Why can't I focus on objects close to my camera?

Every lens has a Minimum Object Distance (MOD) - the closest distance at which it can focus. Standard M12 lenses can focus at any object distance if the correct height lens holder is used, however, at less than 250mm the corners may be blurry if you use an infinite conjugate M12 lens. Additionally, remember that the MOD is measured from the front of the lens, not the sensor, so account for your lens holder height.

Solutions for close-up work: If you need to focus closer, you have three options: (1) use a taller lens mount to move the lens further away from the sensor, (2) add spacer rings between the lens and holder to increase the back focal distance, or (3) select a shorter focal length lens which generally allows closer focusing. Note that at very close distances, field curvature becomes more pronounced if using an infinite conjugate optimized M12 lens - the corners may be slightly out of focus when the center is sharp. Using a smaller aperture (higher f-number) helps maintain edge-to-edge sharpness.

Contact us for lens recommendations based on your working distance requirements. Our CIL945, CIL142 and CIL121 are finite conjugate optimized.

I'm seeing color shading or dark corners - is my lens compatible with my sensor?

Dark corners (vignetting) typically mean your lens image circle is too small for your sensor. Check that your lens format (e.g., 1/2.8", 1/1.8") matches or exceeds your sensor size. Color shading toward the edges often indicates a Chief Ray Angle (CRA) mismatch between your lens and sensor. Modern CMOS sensors have microlenses that expect light to arrive at specific angles - when the lens CRA doesn't match the sensor CRA, you'll see color shifts or brightness fall-off at the image edges.

How to verify compatibility: Compare your sensor's CRA specification with the lens CRA shown in its mechanical drawing. A mismatch over 5° for linear CRA sensors typically can cause color shading issues.

Learn more about avoiding these issues in our article on lens chief ray angle and sensor matching.

Will everything in my scene be in focus, or do I need to worry about depth of field?

Whether your entire scene stays in focus depends on your depth of field (DoF), which is controlled by three factors: aperture, focal length, and distance to subject. Wide angle M12 lenses (>80°) typically keep everything from 50cm to infinity in acceptable focus. Telephoto lenses (12mm+) or larger apertures (F1.4-F2.0) create much shallower depth of field, requiring more careful consideration.

Practical guidelines: For machine vision, barcode reading, or inspection applications where everything must be sharp, choose a smaller aperture (F2.8 or higher) and ensure your working distance range falls within the calculated DoF. For surveillance or general imaging where some background blur is acceptable, you can use faster lenses. Remember that smaller apertures reduce light transmission, so you'll need better lighting or higher sensor gain.

Calculate your exact depth of field range using our Depth of Field Calculator - input your lens specs and focus distance to see the near and far limits of sharp focus.

Should I use a C-mount or M12 lens for my application?

M12 lenses (S-mount) are ideal for compact applications, board-level cameras, and sensors up to 1/1.8". They're cost-effective, lightweight (typically 2-10g), and perfect for drones, embedded vision, and high-volume products. The 12mm diameter limits optical complexity, so they work best with sensors under 12MP and in good lighting conditions.

C-mount lenses are the professional choice for machine vision and industrial applications. With a 25.4mm threaded diameter mount and 17.526mm flange distance, they accommodate larger, more optics. Choose C-mount when you need: optimized across a large working distance range, sensors larger than 1", resolution above 12MP, motorized iris/focus/zoom, or specialized optics like telecentric designs. The trade-off is size (10-50x heavier) and cost (5-20x more expensive). C-Mount lenses do not necessarily have better performance than M12 lenses due to the mechanical back focal length constraint that requires more / larger glass elements to correct for.

Quick decision guide: Use M12 for embedded/OEM applications where size and cost matter. Use C-mount for industrial/scientific applications where optical performance is critical. Note that C-mount requires a camera with C-mount threading - you cannot adapt M12 to C-mount due to the different flange focal distances.

Do I need an IR cut filter, and should it be in the lens or on the sensor?

CMOS sensors are sensitive to infrared light (700-1100nm) which humans can't see. Without an IR cut filter, daylight images appear washed out with incorrect colors - vegetation looks white/pink and black fabrics appear purple. You need an IR cut filter for accurate color reproduction in any application with visible light imaging.

Lens-integrated filters: Lens-integrated IR filters (like our M12A650 series) are convenient and protect the lens rear element, but these are glued and cannot be removed so be sure to purchase the correct variant. For outdoor/dual-use cameras, consider motorized IR cut filter switchers that automatically switch based on lighting conditions or using a Dual bandpass filter.

When to skip the IR filter: Use lenses without IR filtration (our M12ANIR series) for: night vision with IR illumination, multispectral imaging, or applications specifically detecting IR radiation. Remember that without IR filtering, you cannot achieve accurate visible color imaging even with proper ISP tuning.

How do I stop my lens from rotating and losing focus during operation?

Best M12 lens solution: Vibration, thermal cycling, and handling can cause M12 lenses to rotate and lose focus. The most reliable solution is using a UV+heat dual cure adhesive or standard UV cure adhesive. Apply a small drop to the lens threads then complete final focusing - it remains adjustable during setup. Then, cure with UV light source before moving the camera, and finally cure using heat to ensure adhesive within the shadow zones is fully cured.

Alternate M12 lens solutions: You can also use a M12 S-Mount lock nut that tightens against the lens once focused. Or, use standard plumbers tape / teflon tape wrapped around the lens threads.

For C-mount lenses: These typically use a set screw in the lens barrel. Industrial C-mount lenses often include locking mechanisms built into the focus ring. Always verify the lock is engaged before deploying the camera. However, C-Mount lenses are generally more prone to failure over vibration as a result of these internal moving parts.

How do I choose the right lens focal length for my application?

Select your focal length based on: (1) what you need to see (field of view), (2) how far away it is (working distance), and (3) your sensor size. The basic formula: Focal Length = (Working Distance × Sensor Size) / Field of View Width. For example, to image a 2-meter wide area from 3 meters away with a 1/2.8" sensor (4.8mm width): 3000mm × 4.8mm / 2000mm = 7.2mm focal length needed.

Remember that shorter focal lengths (wide angle) show more area but with less detail, while longer focal lengths (telephoto) show less area but with greater detail. If unsure, choose a varifocal C-mount lens (2.8-12mm range) to experiment before committing to a fixed focal length.

Can Commonlands help me design and assemble a complete camera module?

Yes! Commonlands offers complete camera modules and camera module focus+glue assembly services for OEM customers. We handle everything from optical design and sensor selection to final assembly and quality testing. Our services include: lens optimized for your sensor and application, sensor integration with leading image sensors from Sony, OmniVision, and OnSemi, selection of lens holders and mounting solutions, and complete module assembly including lens focusing and thread locking.

Typical project scope: We work with customers from prototype through production volumes (100 to 100,000+ units annually). Our team can optimize existing designs for cost reduction, improve optical performance, or develop entirely new camera modules to your specifications. We maintain inventory of common lenses for rapid prototypes, with production lead times of 6-12 weeks depending on customization level.

Getting started: Contact our engineering team with your target specifications: resolution, field of view, working distance, environmental requirements (IP67, operating temperature), interface type (MIPI, USB, LVDS), and target price point. We'll provide a detailed proposal including optical simulation results, mechanical drawings, and sample availability. Most customers start with our standard lens + sensor combinations for proof of concept before moving to custom designs.

Q: What is an M12 lens (S-mount lens)?

Answer: An M12 lens is a compact lens with a 12mm thread diameter, often called an S-mount lens. These lenses screws into a camera M12 lens mount and are easy to use. These lenses are used in board-level cameras for embedded vision systems. M12 lenses are smaller than C/CS-mount lenses, making them ideal for space-constrained applications like robotics​.

Q: What cameras can I use M12 lenses with?

A: There are many embedded vision cameras, image sensors, and AI cameras that are compatible with M12 lenses. As long as camera's lens holder is compatible with the mechanical dimensions of the lens, the lens should focus! Please make sure to match the image circle, FoV, and resolution.

질문: M12 렌즈는 어떻게 초점을 맞추나요?

Answer: Use focus targets, then slowly thread the lens while displaying a video. Go past focus, then come back to focus. You can read our full article on how to focus camera lenses.

추천 사항을 찾고 계시거나, 어디서부터 시작해야 할지 막막하시거나, 맞춤 설정에 대해 논의하고 싶으십니까? 미국에 있는 당사 광학 엔지니어에게 문의하십시오.